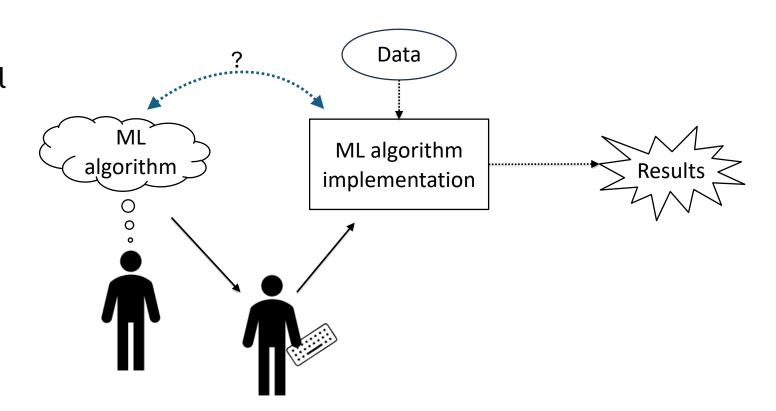
Formally Verified Implementation of the *K*-Nearest Neighbors Classification Algorithm

Bernny Velasquez, Jessica Herring, and <u>Nadeem Abdul Hamid</u> Berry College, Georgia, USA

Implementing Machine Learning Algorithms

 Gap between the mathematical model and mechanics of implementation

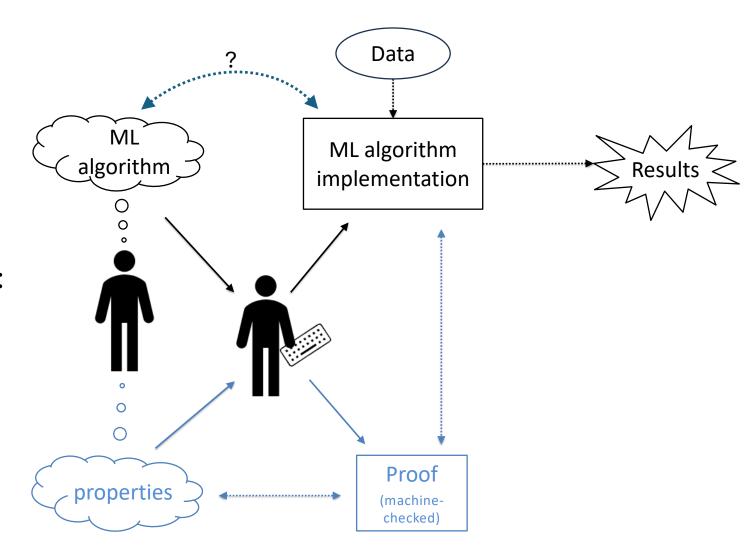


Implementing Machine Learning Algorithms

 Gap between the mathematical model and mechanics of implementation

(Big Picture)
 Context for this work:

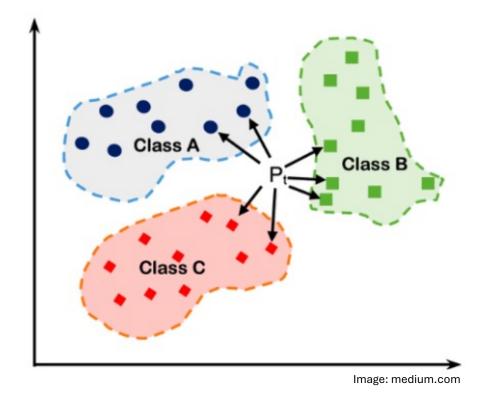
Development of verified implementations of ML systems



Focus: Classification

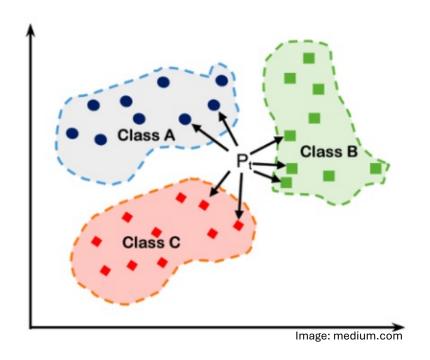
 Does the program code for an ML algorithm faithfully implement the mathematical model/description?

 Focus on the mechanics of the algorithm, not meta-theoretical or application-specific properties



KNN (K-Nearest-Neighbors) Classification

- One of the oldest, well-known, widely used classification algorithms
 - Assigns class labels to observations based on previously seen data
 - Can also be used for regression
- Applied in a wide variety of domains (not just ML)
- Popularity can be attributed to its simplicity, ease of implementation, and high accuracy rates
- Although, there are known limitations of KNN search
 - (curse of dimensionality; scaling to large data sets)



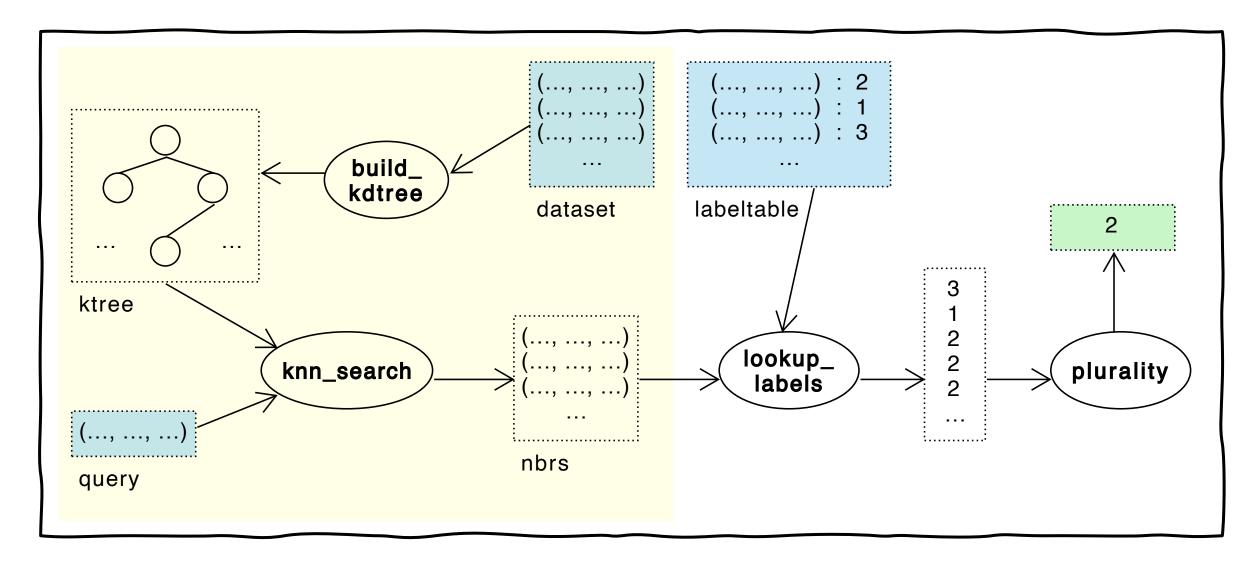
Contributions

Mechanically verified implementation of a

KNN classification algorithm in the Coq proof assistant.

- 🙀 Integrating previously-verified data structures/algorithms
 - k-d trees and AVL tree-based Map
 - Generalized K-nearest-neighbors search
 - **Plurality** algorithm
- Formal specification and verification

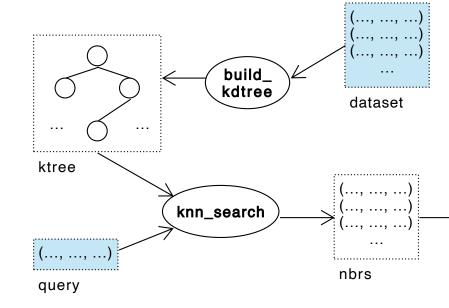
Classifier Implementation



Prior Work: Verified KNN Search [Hamid, SAC 2024]

Construct a k-d tree structure from a list of k-dimensional data points

build_kdtree (k:nat) (data:list datapt) : kdtree



Produce a list of the **K** nearest data points (based on a given **distance metric**) to the **query** point among all the points in the **tree**.

```
knn_search
(D:datapt -> datapt -> nat) (K:nat) (k:nat) (tree:kdtree) (query:datapt) : list datapt
```

Prior Work: Verified KNN Search [Hamid, SAC 2024]

```
Theorem knn_search_build_kdtree_correct :
 forall dist_metric, dist_metric_wf dist_metric_->
 forall (K:nat) (k : nat) (data : list datapt), // Preconditions:
   0 < K ->
                                                     // at least one neighbor sought
   0 < length data ->
                                                     // data is non-empty
   0 < k ->
                                                     // dimension space is non-empty
   (forall v' : datapt,
                                                     // all data points well-formed (k-dim)
           In v' data -> length v' = k) ->
   forall tree query result,
      tree = (build_kdtree k data) ->
                                                   // If: the k-d tree built from data
       knn_search K k tree query = result ->
                                                   // produces result for a query point,
      exists leftover,
                                                    // Then:
          length result = min K (length data) // the result is length (at most) K,
          /\ Permutation data (result ++ leftover) // and is a sub-list of data,
          /\ all_in_leb (dist_metric query) result leftover. // and everything in
                    // result is closer in distance to the query than all the leftover part of data.
```

Classify algorithm

```
Definition classify (D : datapt -> datapt -> nat) (* dist metric *)
                     (K : nat) (* number of neighbors *)
                     (k : nat) (* dimensions of all points *)
                     (dataset : (list datapt))
                     (labeltable : LabelTable)
                     (query : datapt)
                     : option nat :=
    let ktree := (build_kdtree k dataset) in
    let nbrs := knn_search D K k ktree query in
        fst (plurality (lookup_labels labeltable nbrs)).
                                                       kdtree
                                                             dataset
                                                                   labeltable
```

ktree

knn_search

nbrs

1

plurality

lookup

Computing Plurality

- Given a list of values, determine the most frequently occurring
- Produce a pair of a potential maximum frequency value and the maximum frequency count of any value in the given list
 - In case of a tie, produce **None** as the maximum frequency value
- To compute plurality (v :: tail),
 consider plurality tail and cv = 1 + count v tail
 Case (None, c) and c < cv → v is the new plurality value
 Case (None, c) and c >= cv → retain (None, c)
 Case (Some x, c) and c = cv → tie, so (None, c)
 Case (Some x, c) and c < cv → v is the new plurality value
 Case (Some x, c) and c > cv → retain x

Plurality Implementation

```
Function plurality (vals : list nat) : option nat * nat :=
 match vals with
  | nil => (None, 0)
  | h :: t => match (plurality t) with
             | (None, c) = > let c' := (1 + count t h) in
                 if c <? c' then (Some h, c') else (None, c)
             | (Some x, c) => let c' := (1 + count t h) in
                 if c =? c' then (None, c)
                else if c <? c' then (Some h, c')
                                      (Some x, c)
                else
             end
 end.
```

Specification

```
Theorem classify correct some :
    forall dist metric, dist metric wf dist metric ->
    forall K k data labels query c,
   0 < K \rightarrow 0 < k \rightarrow
    length data >= K ->
    (forall d : datapt, List.In d data -> length d = k) -> (* all data of dimension k *)
    (forall d : datapt, List.In d data -> FMap.In d labels) -> (* every pt has a label *)
    classify dist metric K k data labels query = Some c ->
    exists near far classes,
        Permutation data (near ++ far) /\
                                                       (* the `near` portion of the data *)
        length near = K / \
                                                       (* are the K
                                                                                          *)
        all in leb (dist metric query) near far /\ (* nearest neighbors
        ClassesOf labels near classes /\ (* `classes` are the labels of the `near`s *)
        IsPlurality c classes.
                                         (* c is the plurality of all the `near` labels *)
```

Specification (part 2) - completeness

Supporting Predicates

Reflections

- Coq standard library
 - Function (functional induction)
 - (In)Consistency count_occ vs. count / eq_dec vs eqb
- User-defined tactics
 - Permutations
- Specification correctness
 - Alternate completeness ↔
- Development cost

```
eq_dec : forall x y : \underline{A}, \underline{\{x = y\}+\{x \leftrightarrow y\}}
eqb : nat -> nat -> bool .
```

Future Directions

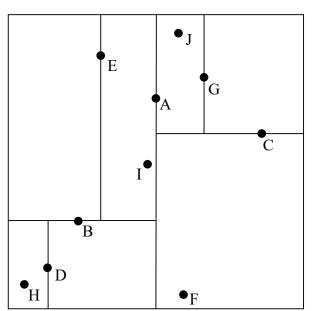
- KNN variations
 - Alternate tree data structures, dimension reduction, approximation, ...
- Apply verification to "mainstream" language implementation
- Additional ML classification algorithms
 - Toolkit of specification approaches and verification techniques

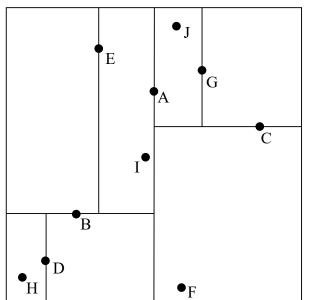
Thank you!

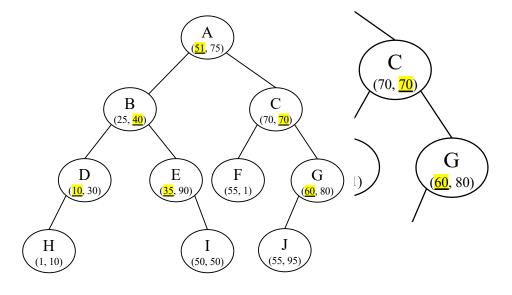
nadeem@acm.org

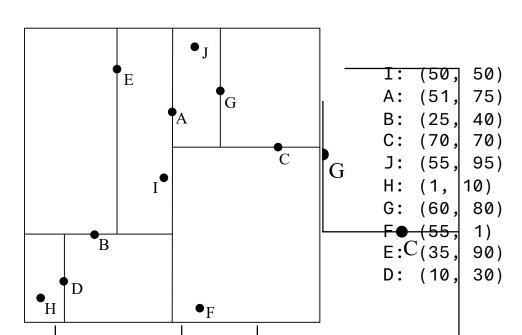
- B

- a
- Enables sub-linear N complexity through b and-bound









Lowercase k = dimension of data points; Uppercase *K* = number of neighbors