
(Nearest) Neighbors You Can Rely On
Formally Verified 𝑘-d Tree 

Construction and Search in Coq
Nadeem Abdul Hamid

Berry College, Georgia, USA

SAC-SVT 2024, Ávila, Spain



Bla bla 
Your text would go here. 

Abstract
Your text would go here. 

Your text would go here. 

Your text would go here. 

JESSICA HERRING
Department of Mathematics and Computer Science 

Your text would go here. 

Formally Verified Implementation of a !-Nearest Neighbors 
Classification Algorithm

ML 
algorithm

ML algorithm 
implementation

Proof
(machine-
checked)

Results

properties

Data

ML 
algorithm

ML algorithm 
implementation Results

Data

Proof
(machine-
checked)

properties

Implementing Machine Learning Algorithms

?• Gap between the 
mathematical model 
and mechanics of 
implementation



Bla bla 
Your text would go here. 

Abstract
Your text would go here. 

Your text would go here. 

Your text would go here. 

JESSICA HERRING
Department of Mathematics and Computer Science 

Your text would go here. 

Formally Verified Implementation of a !-Nearest Neighbors 
Classification Algorithm

ML 
algorithm

ML algorithm 
implementation

Proof
(machine-
checked)

Results

properties

Data

ML 
algorithm

ML algorithm 
implementation Results

Data

Proof
(machine-
checked)

properties

Bla bla 
Your text would go here. 

Abstract
Your text would go here. 

Your text would go here. 

Your text would go here. 

JESSICA HERRING
Department of Mathematics and Computer Science 

Your text would go here. 

Formally Verified Implementation of a !-Nearest Neighbors 
Classification Algorithm

ML 
algorithm

ML algorithm 
implementation

Proof
(machine-
checked)

Results

properties

Data

ML 
algorithm

ML algorithm 
implementation Results

Data

Proof
(machine-
checked)

properties

Implementing Machine Learning Algorithms

?• Gap between the 
mathematical model 
and mechanics of 
implementation

• (Big Picture)
Context for this work:
Development of  
verified 
implementations of 
ML systems



Focus: KNN (K-nearest-neighbors) Search

• Does the program code for an ML 
algorithm faithfully implement the 
mathematical description?
• Focus on the mechanics of the 

algorithm, not meta-theoretical 
properties 
• That an implementation correctly finds 

the closest neighbors to a query
• Not that those closest neighbors have 

some statistical properties
(Future work)
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KNN Search

• One of the oldest, well-known, widely used 
classification algorithms
• Assigns class labels to observations based on 

previously seen data
• Can also be used for regression

• Applied in a wide variety of domains (not just 
ML)
• Popularity can be attributed to its simplicity, 

ease of implementation, and high accuracy 
rates
• Although, there are known limitations of KNN 

search 
• (curse of dimensionality; scaling to large data sets)
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Our Results

Formally verified (machine-checkable) implementation of a 
KNN search algorithm in the Coq proof assistant

• Implementing/Integrating previously-verified data structures
• k-d trees (new)
• bounded priority queue (adapted)

• And algorithms
• Quick-select median finding
• Generalized K-nearest neighbors search



k-d trees
• Binary tree
• Nodes: k-dimensional data 

points
• Each level partitioned based on 

one of k dimensions
• Each subtree associated with 

an (implicit) bounding box
• Enables sub-linear NN search 

complexity through branch-
and-bound
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Figure 1: A :-d tree and induced partitions in the R2 plane.

assistant. Following that we present our implementations in Coq
(Section 3) and then explain their formal veri�cation in Section 4.
Related work is reviewed in Section 5 followed by a discussion of fu-
ture directions and conclusion. An appendix listing Coq statements
of lemmas and theorems is also included.

2 BACKGROUND
2.1 Nearest Neighbor Search Using :-d trees
A :-d tree is a binary tree whose nodes are :-dimensional data
points. Each level in the tree is associated with one of the : dimen-
sions, usually cycling through them in order, 0 . . . (: � 1). Internal
(non-leaf) nodes partition the set of nodes in their subtrees based
on the dimension axis associated with the level they appear at.
In geometric terms, each non-leaf node of a :-d tree splits the
:-dimensional space along a hyperplane perpendicular to the asso-
ciated dimension’s axis.

For the sake of intuition and ease of explanation, assume our
data points are two-dimensional vectors in R2. Thus, the root node
will partition nodes based on their “x” coordinates: all nodes with
an x-coordinate less than that of the root will be in the left subtree;
the remainder will be in the right. At the next level, the root’s
immediate children will partition the remaining nodes based on
their “y” coordinates. Internal nodes at the third level will resume
partitioning based on the x coordinate values.

A concrete example is provided in Figure 1. The bottom portion
of the �gure illustrates how the structure of the :-d tree on top
splits the plane into subplanes, alternating horizontal and vertical
divisions. The highlighted coordinate in each node identi�es the
dimension and value around which the nodes in the subtrees are
partitioned. For instance, all the nodes to the right of B have an
x-coordinate less than 51 (A’s x-value) and y-coordinate greater
than or equal to 40 (B’s y-value).

Constructing a balanced :-d tree is achieved by selecting the
data point with the median value for the dimension associated with
the current level of the tree. In the example of Figure 1, starting with
set of points {A, . . . , J}, the point A would be selected, for having
median x-coordinate value, as the initial root. The rest of the points
would be partitioned into two subsets - one with x-coordinates less
than 51, and everything else in the other. Each of these two subsets
would be recursively processed to build the left and right subtrees
of the root. In each case, the point with the median y-coordinate
will be selected as the root of the subtree. Section 3.2 describes
details of the formalization.

Searching the :-d tree for the nearest neighbor of a query point
@ proceeds by maintaining the currently known closest point (ini-
tially none). The root of the tree is considered and replaces the
current closest point if it is closer to @. If the root and all points in
the (sub)tree are farther away than the closest known point (see dis-
cussion on bounding boxes in Section 3.3), then the entire (sub)tree
is discarded (i.e. pruned) and the closest known point is maintained
as the result. Otherwise, proceed to recursively search the left and
right subtrees of the root. In order to prioritize searching the most
promising subtree, if the value of the current dimension coordinate
of the root is less than the query’s, we search the left subtree �rst,
then the right; otherwise, the right subtree and then the left.

Generalizing the search to  -nearest neighbors1 involves main-
taining a  -bounded max priority queue instead of a single closest
known point. At each subtree in the search process, if the root is
eligible for consideration (i.e. is at least as close to @ as the top,
or maximum element, of the queue) it is added to the queue. The
bounded nature of the queue ensures that if its size exceeds  , then
the point with largest distance from the query will be discarded.
While our Coq developments also include veri�cation of the (sin-
gle) nearest neighbor search algorithm, for the purposes of this
paper we focus on the general variant. Section 3.4 presents the
implementation of  -nearest neighbors search in Coq.

2.2 The Coq Proof Assistant
Coq [1] is an interactive proof assistant based on a higher-order
predicate logic extended with inductive data types. By virtue of
the Curry-Howard isomorphism relating proofs and programs, the
Coq system provides a development environment in which pro-
gramming and proving are closely intertwined. It enables the user
to de�ne data types and functions in a functional programming
paradigm while writing rich logical speci�cations and constructing
proofs in the same framework. For brevity, we only highlight here
some salient features of Coq.

1Throughout the paper, lowercase : denotes the number of dimensions of the data
points and uppercase  is the number of nearest neighbors that are sought.

I: (50, 50)
A: (51, 75)
B: (25, 40)
C: (70, 70)
J: (55, 95)
H: (1, 10)
G: (60, 80)
F: (55, 1)
E: (35, 90)
D: (10, 30)Lowercase k = dimension of data points;  

Uppercase K = number of neighbors
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assistant. Following that we present our implementations in Coq
(Section 3) and then explain their formal veri�cation in Section 4.
Related work is reviewed in Section 5 followed by a discussion of fu-
ture directions and conclusion. An appendix listing Coq statements
of lemmas and theorems is also included.

2 BACKGROUND
2.1 Nearest Neighbor Search Using :-d trees
A :-d tree is a binary tree whose nodes are :-dimensional data
points. Each level in the tree is associated with one of the : dimen-
sions, usually cycling through them in order, 0 . . . (: � 1). Internal
(non-leaf) nodes partition the set of nodes in their subtrees based
on the dimension axis associated with the level they appear at.
In geometric terms, each non-leaf node of a :-d tree splits the
:-dimensional space along a hyperplane perpendicular to the asso-
ciated dimension’s axis.

For the sake of intuition and ease of explanation, assume our
data points are two-dimensional vectors in R2. Thus, the root node
will partition nodes based on their “x” coordinates: all nodes with
an x-coordinate less than that of the root will be in the left subtree;
the remainder will be in the right. At the next level, the root’s
immediate children will partition the remaining nodes based on
their “y” coordinates. Internal nodes at the third level will resume
partitioning based on the x coordinate values.

A concrete example is provided in Figure 1. The bottom portion
of the �gure illustrates how the structure of the :-d tree on top
splits the plane into subplanes, alternating horizontal and vertical
divisions. The highlighted coordinate in each node identi�es the
dimension and value around which the nodes in the subtrees are
partitioned. For instance, all the nodes to the right of B have an
x-coordinate less than 51 (A’s x-value) and y-coordinate greater
than or equal to 40 (B’s y-value).

Constructing a balanced :-d tree is achieved by selecting the
data point with the median value for the dimension associated with
the current level of the tree. In the example of Figure 1, starting with
set of points {A, . . . , J}, the point A would be selected, for having
median x-coordinate value, as the initial root. The rest of the points
would be partitioned into two subsets - one with x-coordinates less
than 51, and everything else in the other. Each of these two subsets
would be recursively processed to build the left and right subtrees
of the root. In each case, the point with the median y-coordinate
will be selected as the root of the subtree. Section 3.2 describes
details of the formalization.

Searching the :-d tree for the nearest neighbor of a query point
@ proceeds by maintaining the currently known closest point (ini-
tially none). The root of the tree is considered and replaces the
current closest point if it is closer to @. If the root and all points in
the (sub)tree are farther away than the closest known point (see dis-
cussion on bounding boxes in Section 3.3), then the entire (sub)tree
is discarded (i.e. pruned) and the closest known point is maintained
as the result. Otherwise, proceed to recursively search the left and
right subtrees of the root. In order to prioritize searching the most
promising subtree, if the value of the current dimension coordinate
of the root is less than the query’s, we search the left subtree �rst,
then the right; otherwise, the right subtree and then the left.

Generalizing the search to  -nearest neighbors1 involves main-
taining a  -bounded max priority queue instead of a single closest
known point. At each subtree in the search process, if the root is
eligible for consideration (i.e. is at least as close to @ as the top,
or maximum element, of the queue) it is added to the queue. The
bounded nature of the queue ensures that if its size exceeds  , then
the point with largest distance from the query will be discarded.
While our Coq developments also include veri�cation of the (sin-
gle) nearest neighbor search algorithm, for the purposes of this
paper we focus on the general variant. Section 3.4 presents the
implementation of  -nearest neighbors search in Coq.

2.2 The Coq Proof Assistant
Coq [1] is an interactive proof assistant based on a higher-order
predicate logic extended with inductive data types. By virtue of
the Curry-Howard isomorphism relating proofs and programs, the
Coq system provides a development environment in which pro-
gramming and proving are closely intertwined. It enables the user
to de�ne data types and functions in a functional programming
paradigm while writing rich logical speci�cations and constructing
proofs in the same framework. For brevity, we only highlight here
some salient features of Coq.

1Throughout the paper, lowercase : denotes the number of dimensions of the data
points and uppercase  is the number of nearest neighbors that are sought.
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assistant. Following that we present our implementations in Coq
(Section 3) and then explain their formal veri�cation in Section 4.
Related work is reviewed in Section 5 followed by a discussion of fu-
ture directions and conclusion. An appendix listing Coq statements
of lemmas and theorems is also included.
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A :-d tree is a binary tree whose nodes are :-dimensional data
points. Each level in the tree is associated with one of the : dimen-
sions, usually cycling through them in order, 0 . . . (: � 1). Internal
(non-leaf) nodes partition the set of nodes in their subtrees based
on the dimension axis associated with the level they appear at.
In geometric terms, each non-leaf node of a :-d tree splits the
:-dimensional space along a hyperplane perpendicular to the asso-
ciated dimension’s axis.

For the sake of intuition and ease of explanation, assume our
data points are two-dimensional vectors in R2. Thus, the root node
will partition nodes based on their “x” coordinates: all nodes with
an x-coordinate less than that of the root will be in the left subtree;
the remainder will be in the right. At the next level, the root’s
immediate children will partition the remaining nodes based on
their “y” coordinates. Internal nodes at the third level will resume
partitioning based on the x coordinate values.

A concrete example is provided in Figure 1. The bottom portion
of the �gure illustrates how the structure of the :-d tree on top
splits the plane into subplanes, alternating horizontal and vertical
divisions. The highlighted coordinate in each node identi�es the
dimension and value around which the nodes in the subtrees are
partitioned. For instance, all the nodes to the right of B have an
x-coordinate less than 51 (A’s x-value) and y-coordinate greater
than or equal to 40 (B’s y-value).

Constructing a balanced :-d tree is achieved by selecting the
data point with the median value for the dimension associated with
the current level of the tree. In the example of Figure 1, starting with
set of points {A, . . . , J}, the point A would be selected, for having
median x-coordinate value, as the initial root. The rest of the points
would be partitioned into two subsets - one with x-coordinates less
than 51, and everything else in the other. Each of these two subsets
would be recursively processed to build the left and right subtrees
of the root. In each case, the point with the median y-coordinate
will be selected as the root of the subtree. Section 3.2 describes
details of the formalization.

Searching the :-d tree for the nearest neighbor of a query point
@ proceeds by maintaining the currently known closest point (ini-
tially none). The root of the tree is considered and replaces the
current closest point if it is closer to @. If the root and all points in
the (sub)tree are farther away than the closest known point (see dis-
cussion on bounding boxes in Section 3.3), then the entire (sub)tree
is discarded (i.e. pruned) and the closest known point is maintained
as the result. Otherwise, proceed to recursively search the left and
right subtrees of the root. In order to prioritize searching the most
promising subtree, if the value of the current dimension coordinate
of the root is less than the query’s, we search the left subtree �rst,
then the right; otherwise, the right subtree and then the left.

Generalizing the search to  -nearest neighbors1 involves main-
taining a  -bounded max priority queue instead of a single closest
known point. At each subtree in the search process, if the root is
eligible for consideration (i.e. is at least as close to @ as the top,
or maximum element, of the queue) it is added to the queue. The
bounded nature of the queue ensures that if its size exceeds  , then
the point with largest distance from the query will be discarded.
While our Coq developments also include veri�cation of the (sin-
gle) nearest neighbor search algorithm, for the purposes of this
paper we focus on the general variant. Section 3.4 presents the
implementation of  -nearest neighbors search in Coq.

2.2 The Coq Proof Assistant
Coq [1] is an interactive proof assistant based on a higher-order
predicate logic extended with inductive data types. By virtue of
the Curry-Howard isomorphism relating proofs and programs, the
Coq system provides a development environment in which pro-
gramming and proving are closely intertwined. It enables the user
to de�ne data types and functions in a functional programming
paradigm while writing rich logical speci�cations and constructing
proofs in the same framework. For brevity, we only highlight here
some salient features of Coq.

1Throughout the paper, lowercase : denotes the number of dimensions of the data
points and uppercase  is the number of nearest neighbors that are sought.
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assistant. Following that we present our implementations in Coq
(Section 3) and then explain their formal veri�cation in Section 4.
Related work is reviewed in Section 5 followed by a discussion of fu-
ture directions and conclusion. An appendix listing Coq statements
of lemmas and theorems is also included.
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sions, usually cycling through them in order, 0 . . . (: � 1). Internal
(non-leaf) nodes partition the set of nodes in their subtrees based
on the dimension axis associated with the level they appear at.
In geometric terms, each non-leaf node of a :-d tree splits the
:-dimensional space along a hyperplane perpendicular to the asso-
ciated dimension’s axis.

For the sake of intuition and ease of explanation, assume our
data points are two-dimensional vectors in R2. Thus, the root node
will partition nodes based on their “x” coordinates: all nodes with
an x-coordinate less than that of the root will be in the left subtree;
the remainder will be in the right. At the next level, the root’s
immediate children will partition the remaining nodes based on
their “y” coordinates. Internal nodes at the third level will resume
partitioning based on the x coordinate values.

A concrete example is provided in Figure 1. The bottom portion
of the �gure illustrates how the structure of the :-d tree on top
splits the plane into subplanes, alternating horizontal and vertical
divisions. The highlighted coordinate in each node identi�es the
dimension and value around which the nodes in the subtrees are
partitioned. For instance, all the nodes to the right of B have an
x-coordinate less than 51 (A’s x-value) and y-coordinate greater
than or equal to 40 (B’s y-value).

Constructing a balanced :-d tree is achieved by selecting the
data point with the median value for the dimension associated with
the current level of the tree. In the example of Figure 1, starting with
set of points {A, . . . , J}, the point A would be selected, for having
median x-coordinate value, as the initial root. The rest of the points
would be partitioned into two subsets - one with x-coordinates less
than 51, and everything else in the other. Each of these two subsets
would be recursively processed to build the left and right subtrees
of the root. In each case, the point with the median y-coordinate
will be selected as the root of the subtree. Section 3.2 describes
details of the formalization.

Searching the :-d tree for the nearest neighbor of a query point
@ proceeds by maintaining the currently known closest point (ini-
tially none). The root of the tree is considered and replaces the
current closest point if it is closer to @. If the root and all points in
the (sub)tree are farther away than the closest known point (see dis-
cussion on bounding boxes in Section 3.3), then the entire (sub)tree
is discarded (i.e. pruned) and the closest known point is maintained
as the result. Otherwise, proceed to recursively search the left and
right subtrees of the root. In order to prioritize searching the most
promising subtree, if the value of the current dimension coordinate
of the root is less than the query’s, we search the left subtree �rst,
then the right; otherwise, the right subtree and then the left.

Generalizing the search to  -nearest neighbors1 involves main-
taining a  -bounded max priority queue instead of a single closest
known point. At each subtree in the search process, if the root is
eligible for consideration (i.e. is at least as close to @ as the top,
or maximum element, of the queue) it is added to the queue. The
bounded nature of the queue ensures that if its size exceeds  , then
the point with largest distance from the query will be discarded.
While our Coq developments also include veri�cation of the (sin-
gle) nearest neighbor search algorithm, for the purposes of this
paper we focus on the general variant. Section 3.4 presents the
implementation of  -nearest neighbors search in Coq.

2.2 The Coq Proof Assistant
Coq [1] is an interactive proof assistant based on a higher-order
predicate logic extended with inductive data types. By virtue of
the Curry-Howard isomorphism relating proofs and programs, the
Coq system provides a development environment in which pro-
gramming and proving are closely intertwined. It enables the user
to de�ne data types and functions in a functional programming
paradigm while writing rich logical speci�cations and constructing
proofs in the same framework. For brevity, we only highlight here
some salient features of Coq.

1Throughout the paper, lowercase : denotes the number of dimensions of the data
points and uppercase  is the number of nearest neighbors that are sought.

[(xmin, ymin), (xmax, ymax)]
A - [(−∞, −∞), (+∞, +∞)]
… 
I   - [(35, 40), (51, +∞)] 

• Implicit in implementation;
Crucial to correctness



Coq
developments

knn_search.v
«3600»

bounded pqueue insert
knn search algorithm
  and correctness

kdtree.v
«820»

k-d tree structure
building a k-d tree
verifying k-d tree bounding
(single) NN search

quick_select_partition.v
«725»

quick select algorithm
median partitioning

bounding_boxes.v
«315»

k-dim data points 
distance metric
bounding boxes, 
   splitting and containment
closest edge point wrt a bbox

max_pqueue.v
«465»

priority queue

module_name
data structure defns.
function headers
propositional defns.
theorem statements

bounding_boxes.v
datapt : [ n_0, ..., n_k ]   
bbox : ( [min_0, ..., min_k], [max_0, ..., max_k] )
bb_spl i t
   (bb:bbox) (d:nat) (v:nat) : bbox * bbox
bb_contains
   (bb:bbox) (pt:datapt) : bool
closest_edge_point
   (pt:datapt) (bb:bbox) : datapt
sum_dist
   (vs ws:datapt) : nat
closest_edge_point_min_dist
�  : forall (bb : bbox) (pt : list nat) (pt' : datapt),
       bb_contains bb pt' = true ->
       sum_dist pt (closest_edge_point pt bb) <= sum_dist pt pt'



Theorem knn_search_build_kdtree_correct :
forall (K:nat) (k : nat) (data : list datapt),  //  Preconditions:
0 < K -> // at least one neighbor sought
0 < length data -> // data is non-empty
0 < k -> // dimension space is non-empty
(forall v' : datapt,    // all data points well-formed (k-dim)

In v' data -> length v' = k) ->
forall tree query result,

tree = (build_kdtree k data) ->        // If: the k-d tree built from data
knn_search K k tree query = result ->  // produces result for a query point,
exists leftover, // Then:

length result = min K (length data)     // the result is length (at most) K,
/\ Permutation data (result ++ leftover) // and is a sub-list of data,
/\ all_in_leb (sum_dist query) result leftover. // and everything in

// result is closer in distance to the query than all the leftover part of data.

Final Theorem
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– The results produced should be distinct elements of the initial data.
– The list of results should be the elements with the smallest distances from

the query point.

In our experience, it is generally easier to separate out and prove the first
property independently of the others. We start with a proposition about the
top-level call of knn_search:

Lemma 7 (knn_search_build_size). Given a list of data points D, query
point q, initial bounding box B� = [(��, ��), (+�, +�)], and tree
t = build_kdtree(k, D),

|knn(K, k, t, B�, q, [])| = min(K, |D|).

Lemma 7 follows fairly directly from the following generalized statement of
the property, which is established by induction. In most cases, top-level theorem
statements depend on a lemma that generalizes over the initial bounding box
and tree, to allow application of the inductive hypothesis.

Lemma 8 (knn_search_build_size_gen). For any data point list D and
tree t, where Contents_kdtree(t) = D; and priority queue pq, where |pq| � K,

|knn(K, k, t, B, q, pq)| = min(K, |D| + |pq|).

Lemma 8 relies on the correctness of the bounded insertion operation with re-
spect to maintaining a maximum queue size of K.

Along the lines of Lemmas 8 and 8, we develop another pair of lemmas
covering the further properties of knn_search. The top-level one states that
knn_search effectively partitions the input data into two lists, R (result) and L
(leftover), where R �� L.

Lemma 9 (knn_full_relate). Given a list of data points D, query point q,
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Figure 6: Partitions induced by the knn function.

build_kdtree(:,⇡) and ⌫ = [(�1,�1), (+1, +1)]. Applying this
to the proof of Theorem 4.1 depends on the relationship between
Contents_kdtree and build_kdtree (see Lemma 4.7).

For the latter two properties of Theorem 4.1, we develop another
pair of lemmas expressing that knn_search e�ectively partitions
the input data into two lists, ' (result) and ! (leftover), where '!.
The top-level one is stated:

L���� 4.3 (���_����_������). Given a list of data points ⇡ ,
query point @, and tree C = build_kdtree(:,⇡),

9', !, knn_search( ,:, C,@) = ' ^ ⇡ ùû (' ++ !) ^ '  !.

The associated generalized lemma unravels the details of the
data �ow through the algorithm, and is proved by induction on the
structure of the tree:
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9?@B<, ?@;6,⇡B<,⇡;6, !, (?@B< ++ ?@;6) ùû ?@ ^
(⇡B< ++ ⇡;6) ùû ⇡ ^
(?@B< ++ ⇡B<) ùû ' ^
(?@;6 ++ ⇡;6) ùû ! ^
'  ! ^
(( |' | <  ) ) ! = []).

A graphical intuition for Lemma 4.4 is given in Figure 6. The e�ect
induced by knn on its input priority queue (viewed abstractly as a
list) and list of data points (contained in the :-d tree) is to partition
each of those lists into two chunks, where all elements of the �rst
chunk (?@B< and ⇡B<) are less than or equal to those in the second
(?@;6 and ⇡;6 , respectively). Then, knn selects out the two chunks
of lesser elements to form the result it produces, leaving behind
a (discarded) result that contains the two larger chunks of each
list. While it appears intuitively correct, the proof of this lemma
was extremely long and tedious to develop. One reason was the
lack of automation for reasoning about Permutations (discussed
later). The other was that large portions of the proof tactics were
duplicated to cover the di�erent execution paths in the function
(the conditional expressions leading to the evaluation of the body
in Figure 5). When reasoning through the nested recursive calls,
each intermediate result gets partitioned into additional pieces as it
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the cep function (Section 3.3) does in fact compute the closest
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Given a point @ and bounding box ⌫, 8? 2 ⌫, X@ (cep(@,⌫))  X@ (?) .

Besides conforming to bounding box constraints, the build_kdtree
algorithm should result in a tree whose contents are exactly some
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Here 3<>3 represents the value (3 mod :) where 3 is the current
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The (quick_select_permutation) lemma of Theorem 4.9 in the next
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4.3 Quickselect
To account for the fuel argument used by qsp (Figure 2), we prove
that as long as steps is at least the length of the input list, and k is
less than its length, quick_select will always produce some result
(as opposed to None).

L���� 4.8 (���_�����).
If : < |; | and |; |  steps, then

9?, qsp(steps,:, ;, ?) = Some ? .

With this established, we can specify and prove properties of
quick_select as stated by the following theorem. The labels in



Quickselect

Theorem quick_select_exists_correct :
forall (X:Set) (k:nat) (l:list X) 

(le:X -> X -> bool),
le_props le ->
k < length l ->
exists l1 v l2, 

quick_select k l le = Some (l1,v,l2) /\
Permutation l (l1 ++ v :: l2) /\
length l1 = k /\
(forall x, In x l1 -> le x v = true) /\
(forall x, In x l2 -> le v x = true).

quick_select

k

k
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parentheses correspond to names of lemmas in the Coq proof script,
each property stated and proved independently.

T������ 4.9 (����_������_������_�������). For any well-
behaved “less than or equal” operation, ?, if : < |; |, then

(1) 9;1, E, ;2,
quick_select(:, ;, ?) = Some (;1, E, ;2) (quick_select_always_some)

(2) ; ùû (;1 ++ [E] ++ ;2) (quick_select_permutation)

(3) |;1 | = : (qsp_position)

(4) 8G 2 ;1, G ? E (qsp_all_smaller)

(5) 8G 2 ;2, E ? G (qsp_all_larger)

For quick_select, (1) we always get a partition of the original
list into three pieces: two lists and an element. The combination
of these pieces should be a reordering of the input list (2). If E is
meant to be the :th smallest element (where : = 0 for the minimum
of entire list), then ;1 should contain exactly : elements (3). We
also expect that everything in ;1 is less than or equal to E (4); and
symmetrically, that everything in ;2 is greater than or equal to E (5).
The properties of ? needed to establish (4) and (5) above are that
it be transitive and total:
Definition le_props {X:Set} (le:X -> X -> bool) : Prop :=

(forall a b c, le a b = true -> le b c = true

-> le a c = true) /\

(forall a b, le a b = true \/ le b a = true).

Theorem 4.9 above is one possible formulation of correctness for
quick_select. Alternatively, an early iteration used the following
(in which the function only produced the median value):

If quick_select(:, ;, ?) = Some E , then
(1) | (�lter (_ <? E) ;) |  : ,7
(2) | (�lter (_ =? E) ;) |  |; |, and
(3) | (�lter (E <? _) ;) | < |; | � : .

In our assessment, while logically equivalent and more concise,
this formulation is much less intuitive. It is also not convenient at
all to work with when reasoning about a larger algorithm that uses
quick_select. Appealing to the concept of Permutation enables
concise and intuitive speci�cation of the algorithm’s behavior.

5 RELATED WORK
Veri�cation of classic, or “textbook,” algorithms and data structures
has a long history in mechanical veri�cation and theorem proving.
The subtle and nuanced invariants involved mean that the process
often needs to be guided interactively (as opposed to using fully
automated methods). Nipkow et al.[16] reviews the state of the art
at the beginning of the current decade. As surveyed in that work,
there are a variety of systems and frameworks used for algorithm
veri�cation. In our use of Coq, the present work resembles algo-
rithms and data structures veri�ed by Appel [2], although :-d trees
are slightly more complex than the material covered there. In terms
of the complexity of the data structure and algorithm, our work
is similar to the veri�cation of the Gale-Shapley stable matching
algorithm in [11].

To our knowledge, there is no prior work in Coq formally veri-
fying :-d trees or any type of nearest neighbor search algorithm.
After completing our veri�cation project, we did became aware of
an earlier, independent formalization and veri�cation based on the
7This says, the number of elements in ; strictly less than E is less than or equal to : .

Isabelle/HOL proof assistant, not described or published other than
the script in the Archive of Formal Proofs [7, 17]. The latter veri�es
a more sophisticated pivot selection algorithm, median-of-medians,
whereas our formalization simply picks an arbitrary pivot, since
our primary focus was on the KNN search algorithm. In contrast,
our implementation of quickselect produces a balanced partition
of the input list in addition to its median value. In Rau’s develop-
ment [17], a di�erent form of :-d trees was implemented, where all
data points occur at the leaves of the tree and internal nodes only
store the dimension (axis) being split on and a median value for
comparison. Thus, their search implementation proceeds through
the tree and only inserts into the queue when it reaches the leaves.
Our data structure, storing data points at all nodes in the tree, ap-
pears closer to traditional implementations. The formulation of the
KNN search algorithm veri�ed in this paper also appears more true
to standard formulations, such as in the speci�cation of bounding
boxes (“geometric boundaries” of [8]) and use of a priority queue
ADT.

In terms of speci�cation of the overall algorithms, while appear-
ing logically equivalent to ours (a good thing!), [7, 17] appeal to
notions of sorting and sortedness, whereas we avoid any depen-
dence on notions of sorting and formulate our propositions using
more elementary properties of Permutation and all_in_leb. We
feel the use of permutations for the speci�cation is simpler and
more understandable, and in some cases also provides better clar-
ity and understanding about the properties and data �ow of the
algorithm (à la Figure 6). Finally, there are di�erences in the un-
derlying logic of the systems themselves, discussion of which is
beyond the scope of this paper. For example, function de�nitions
such as knn_search in Coq, being actually computational, must
satisfy syntactic termination conditions. Thus, a well-typed func-
tion is guaranteed to terminate by virtue of its de�nition being type
checked. In Isabelle/HOL, termination is established after the fact
(though automatically in many cases) through additional external
proof obligations generated by the framework [15].

6 DISCUSSION AND CONCLUSION
As commonly the case with formalization exercises, our experience
with the KNN search algorithm forced a complete understanding
of all its operational nuances. In particular, since portions of the
development were attended by a team of undergraduate students,
correctness of the pruning behavior and understanding of its rigor-
ous justi�cation, instead of simply an intuitive sense, became very
necessary. Low-level details that are often omitted, assumed, or
ignored in standard presentations had to be explicitly worked out
and stated in order for the proof development to go through. In fact,
presentations of the :-d tree-based KNN search algorithm generally
omit rigorous explanation of correctness, assuming that it is self-
evident. Thus, in developing the speci�cations and proofs described
above, we followed our own initiative, rather than following a prior
published “paper” proof.

While achievable with reasonable e�ort, the formal develop-
ments were still non-trivial. In our project, we used only the stan-
dard Coq library and little proof automation, leading to some long
proof scripts, particularly for Lemma 4.4. Patterns emerged in the
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data points occur at the leaves of the tree and internal nodes only
store the dimension (axis) being split on and a median value for
comparison. Thus, their search implementation proceeds through
the tree and only inserts into the queue when it reaches the leaves.
Our data structure, storing data points at all nodes in the tree, ap-
pears closer to traditional implementations. The formulation of the
KNN search algorithm veri�ed in this paper also appears more true
to standard formulations, such as in the speci�cation of bounding
boxes (“geometric boundaries” of [8]) and use of a priority queue
ADT.

In terms of speci�cation of the overall algorithms, while appear-
ing logically equivalent to ours (a good thing!), [7, 17] appeal to
notions of sorting and sortedness, whereas we avoid any depen-
dence on notions of sorting and formulate our propositions using
more elementary properties of Permutation and all_in_leb. We
feel the use of permutations for the speci�cation is simpler and
more understandable, and in some cases also provides better clar-
ity and understanding about the properties and data �ow of the
algorithm (à la Figure 6). Finally, there are di�erences in the un-
derlying logic of the systems themselves, discussion of which is
beyond the scope of this paper. For example, function de�nitions
such as knn_search in Coq, being actually computational, must
satisfy syntactic termination conditions. Thus, a well-typed func-
tion is guaranteed to terminate by virtue of its de�nition being type
checked. In Isabelle/HOL, termination is established after the fact
(though automatically in many cases) through additional external
proof obligations generated by the framework [15].

6 DISCUSSION AND CONCLUSION
As commonly the case with formalization exercises, our experience
with the KNN search algorithm forced a complete understanding
of all its operational nuances. In particular, since portions of the
development were attended by a team of undergraduate students,
correctness of the pruning behavior and understanding of its rigor-
ous justi�cation, instead of simply an intuitive sense, became very
necessary. Low-level details that are often omitted, assumed, or
ignored in standard presentations had to be explicitly worked out
and stated in order for the proof development to go through. In fact,
presentations of the :-d tree-based KNN search algorithm generally
omit rigorous explanation of correctness, assuming that it is self-
evident. Thus, in developing the speci�cations and proofs described
above, we followed our own initiative, rather than following a prior
published “paper” proof.

While achievable with reasonable e�ort, the formal develop-
ments were still non-trivial. In our project, we used only the stan-
dard Coq library and little proof automation, leading to some long
proof scripts, particularly for Lemma 4.4. Patterns emerged in the

l1 l2

v
l

• Used to build the initial k-d tree
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Fixpoint knn (K:nat) (k:nat) (tree:kdtree) (bb:bbox) (query:datapt)
(pq:priqueue datapt (sum_dist query)) : priqueue datapt (sum_dist query) 

:= match tree with 
| mt_tree => pq
| node ax pt lft rgt =>

let body (pq':priqueue datapt (sum_dist query)) := 
let dx := nth ax pt 0 in
let bbs := bb_split bb ax dx in

if (ith_leb ax pt query) 
then (knn K k rgt (snd bbs) query (knn K k lft (fst bbs) query pq’))
else (knn K k lft (fst bbs) query (knn K k rgt (snd bbs) query pq')) 

in
match (peek_max _ _ pq) with

| None => body (insert_bounded K _ _ pt pq)
| Some top => if (K <=? (size _ _ pq))

&& ((sum_dist query top) <?
(sum_dist query (closest_edge_point query bb)))

then pq
else body (insert_bounded K _ _ pt pq)

end
end.



Definition knn_search (K:nat) (k:nat) (tree:kdtree) (query:datapt) : list datapt
:=
pq_to_list 

(knn K k tree (mk_bbox (repeat None k) (repeat None k)) 
query 
(empty datapt (sum_dist query))).
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– The results produced should be distinct elements of the initial data.
– The list of results should be the elements with the smallest distances from

the query point.

In our experience, it is generally easier to separate out and prove the first
property independently of the others. We start with a proposition about the
top-level call of knn_search:

Lemma 7 (knn_search_build_size). Given a list of data points D, query
point q, initial bounding box B� = [(��, ��), (+�, +�)], and tree
t = build_kdtree(k, D),

|knn(K, k, t, B�, q, [])| = min(K, |D|).

Lemma 7 follows fairly directly from the following generalized statement of
the property, which is established by induction. In most cases, top-level theorem
statements depend on a lemma that generalizes over the initial bounding box
and tree, to allow application of the inductive hypothesis.

Lemma 8 (knn_search_build_size_gen). For any data point list D and
tree t, where Contents_kdtree(t) = D; and priority queue pq, where |pq| � K,

|knn(K, k, t, B, q, pq)| = min(K, |D| + |pq|).

Lemma 8 relies on the correctness of the bounded insertion operation with re-
spect to maintaining a maximum queue size of K.

Along the lines of Lemmas 8 and 8, we develop another pair of lemmas
covering the further properties of knn_search. The top-level one states that
knn_search effectively partitions the input data into two lists, R (result) and L
(leftover), where R �� L.

Lemma 9 (knn_full_relate). Given a list of data points D, query point q,
and tree t = build_kdtree(k, D),

�R, L, knn_search(K, k, t, q) = R � D �� (R ++ L) � R �� L.

The generalized lemma unravels the details of the data flow through the
algorithm, and is proved by induction on the structure of the tree.

Lemma 10 (knn_full_relate_gen). For any data point list D, tree t bounded
by B (where Contents_kdtree(t) = D), priority queue pq, and result R =
knn(K, k, t, B, q, pq),

�pqsm, pqlg, Dsm, Dlg, L, (pqsm ++ pqlg) �� pq �
(Dsm ++ Dlg) �� D �
(pqsm ++ Dsm) �� R �
(pqlg ++ Dlg) �� L �
R �� L �
(|R| < K) � L = [].
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Figure 6: Partitions induced by the knn function.

build_kdtree(:,⇡) and ⌫ = [(�1,�1), (+1, +1)]. Applying this
to the proof of Theorem 4.1 depends on the relationship between
Contents_kdtree and build_kdtree (see Lemma 4.7).

For the latter two properties of Theorem 4.1, we develop another
pair of lemmas expressing that knn_search e�ectively partitions
the input data into two lists, ' (result) and ! (leftover), where '!.
The top-level one is stated:

L���� 4.3 (���_����_������). Given a list of data points ⇡ ,
query point @, and tree C = build_kdtree(:,⇡),

9', !, knn_search( ,:, C,@) = ' ^ ⇡ ùû (' ++ !) ^ '  !.

The associated generalized lemma unravels the details of the
data �ow through the algorithm, and is proved by induction on the
structure of the tree:

L���� 4.4 (���_����_������_���). For any data point list ⇡ ,
tree C bounded by ⌫ (where Contents_kdtree(C) = ⇡), priority queue
?@, and result ' = knn( ,:, C,⌫,@, ?@),

9?@B<, ?@;6,⇡B<,⇡;6, !, (?@B< ++ ?@;6) ùû ?@ ^
(⇡B< ++ ⇡;6) ùû ⇡ ^
(?@B< ++ ⇡B<) ùû ' ^
(?@;6 ++ ⇡;6) ùû ! ^
'  ! ^
(( |' | <  ) ) ! = []).

A graphical intuition for Lemma 4.4 is given in Figure 6. The e�ect
induced by knn on its input priority queue (viewed abstractly as a
list) and list of data points (contained in the :-d tree) is to partition
each of those lists into two chunks, where all elements of the �rst
chunk (?@B< and ⇡B<) are less than or equal to those in the second
(?@;6 and ⇡;6 , respectively). Then, knn selects out the two chunks
of lesser elements to form the result it produces, leaving behind
a (discarded) result that contains the two larger chunks of each
list. While it appears intuitively correct, the proof of this lemma
was extremely long and tedious to develop. One reason was the
lack of automation for reasoning about Permutations (discussed
later). The other was that large portions of the proof tactics were
duplicated to cover the di�erent execution paths in the function
(the conditional expressions leading to the evaluation of the body
in Figure 5). When reasoning through the nested recursive calls,
each intermediate result gets partitioned into additional pieces as it
feeds through the next application of knn, resulting in invocations
of the inductive hypotheses with slightly di�erent contexts.

4.2 Bounding Boxes and :-d trees
Lemmas 4.3 and 4.4 also rely on properties about bounding boxes
and their relationship to :-d trees. While not explicitly represented
in the kdtree data type, bounding boxes are crucial for reasoning
about the properties of the search algorithm. We de�ne a compu-
tational function, kdtree_bounded, to check if a tree is properly
constrained by a given bounding box. This does not simply check
that every point in the tree occurs in the root’s bounding box, but
rather the more nuanced property that subtrees are constrained by
the boxes appropriately split (Section 3.3) according to the dimen-
sion and value associated with the root.

We can then establish that the build_kdtree algorithm (Fig-
ure 3) constructs a tree that is properly constrained by an initially
unbounded box. The proof of this lemma relies on properties of
quick_select (Theorem 4.9):

L���� 4.5 (�����_������_�������). Given a list of data points,
⇡ , each of dimension : ,

kdtree_bounded(build_kdtree(:,⇡), [(�1,�1), (+1, +1)]) .
One other crucial proposition related to bounding boxes is that

the cep function (Section 3.3) does in fact compute the closest
enclosed point. This is necessary for the proof of Lemma 4.4:

L���� 4.6 (���_���_����).
Given a point @ and bounding box ⌫, 8? 2 ⌫, X@ (cep(@,⌫))  X@ (?) .

Besides conforming to bounding box constraints, the build_kdtree
algorithm should result in a tree whose contents are exactly some
permutation of the items in the original list. Establishing this also re-
quires validating the viability of the fuel argument for build_kdtree_
in Figure 3 (because if the fuel ran out early, the function would
not process all the items in the list):

L���� 4.7 (�����_������_��������_����_���). For a list
of data points, ⇡ , if : > 0, 3<>3 < : , and 5 � |⇡ |, then 9;,
Contents_kdtree(build_kdtree_(5 ,:,⇡,3<>3)) = ; ^ ; ùû ⇡ .

Here 3<>3 represents the value (3 mod :) where 3 is the current
depth level of the tree being constructed through the recursive calls
of build_kdtree_ (see depth_mod in Section 3.2). In addition to
having a su�cient bound on the fuel 5 , correct behavior depends on
the number of dimensions : being non-zero and the value of 3<>3
being a valid dimension index. The proof is fairly straightforward
through unfolding the di�erent execution paths in build_kdtree_.
The (quick_select_permutation) lemma of Theorem 4.9 in the next
section is necessary for establishing the permutation property.

4.3 Quickselect
To account for the fuel argument used by qsp (Figure 2), we prove
that as long as steps is at least the length of the input list, and k is
less than its length, quick_select will always produce some result
(as opposed to None).

L���� 4.8 (���_�����).
If : < |; | and |; |  steps, then

9?, qsp(steps,:, ;, ?) = Some ? .

With this established, we can specify and prove properties of
quick_select as stated by the following theorem. The labels in



Lemma insert_bounded_preserve_max
   : forall (K : nat) (A : Type) (key : A -> nat) (e : A) 
            (pq : priqueue A key) (lst : list A),
    priq A key pq ->
     Abs A key pq lst ->
     size A key pq = K -> size A key (insert_bounded K A key e pq) = K. 

Definition insert_bounded (K:nat) A key (e:A) (pq:priqueue A key)
: priqueue A key :=

let updpq := (insert A key e pq)
in 

if K <? (size A key updpq) then 
match delete_max _ key updpq with 
| None => updpq (* should never happen *)
| Some (_ , updpq') => updpq’
end

else updpq.



Proof.
unfold insert_bounded; intros.
rewrite insert_size with (al:=lst); auto.
rewrite HK.
replace (K <? 1 + K) with true.
2: { destruct (K <? 1 + K) eqn:Hk; auto; split_andb_leb; lia. }
pose proof (insert_delete_max_some _ _ e _ _ Hpriq Habs) as (k, (q, Hd)).
rewrite Hd.
apply delete_max_Some_size with (p:=(insert A key e pq)) (k:=k) (pl:=e::lst) 
; auto.
rewrite <- HK.
eapply insert_size; eauto.

Qed.



insert_bounded_preserve_max =
(fun (K : nat) (A : Type) (key : A -
> nat) (e : A) (pq : priqueue A key) (lst : list A) (Hpriq : priq A key pq) (Habs : Abs A key pq lst) (HK : size A key pq = K) => eq_ind_r (fun n : nat => size A key (i
f K <? n then match delete_max A key (insert A key e pq) with
| Some (_, updpq') => updpq'
| None => insert A key e pq
end else insert A key e pq) = K) (eq_ind_r (fun n : nat => size A key (if K <? 1 + n then match delete_max A key (insert A key e pq) with
| Some (_, updpq') => updpq'
| None => insert A key e pq
end else insert A key e pq) = K) (let H : true = (K <? 1 + K) := let b := K <? 1 + K in let Hk : (K <? 1 + K) = b := eq_refl in (if b as b0 return ((K <? 1 + K) = b0 -
> true = b0) then fun _ : (K <? 1 + K) = true => eq_refl else fun Hk0 : (K <? 1 + K) = false => let H : forall x y : nat, (x <? y) = false -
> y <= x := fun x y : nat => match Nat.ltb_ge x y with
| conj x0 _ => x0
end in let Hk1 : 1 + K <= K := H K (1 + K) Hk0 in let Hk2 : BinInt.Z.le (BinInt.Z.add (BinNums.Zpos BinNums.xH) (BinInt.Z.of_nat K)) (BinInt.Z.of_nat K) := ZifyClasses.
rew_iff (1 + K <= K) (BinInt.Z.le (BinInt.Z.add (BinNums.Zpos BinNums.xH) (BinInt.Z.of_nat K)) (BinInt.Z.of_nat K)) (ZifyClasses.mkrel nat BinNums.Z le BinInt.Z.of_nat
BinInt.Z.le Znat.Nat2Z.inj_le (1 + K) (BinInt.Z.add (BinNums.Zpos BinNums.xH) (BinInt.Z.of_nat K)) (ZifyClasses.mkapp2 nat nat nat BinNums.Z BinNums.Z BinNums.Z Nat.add
BinInt.Z.of_nat BinInt.Z.of_nat BinInt.Z.of_nat BinInt.Z.add Znat.Nat2Z.inj_add 1 (BinNums.Zpos BinNums.xH) eq_refl K (BinInt.Z.of_nat K) eq_refl) K (BinInt.Z.of_nat K
) eq_refl) Hk1 in let HK0 : BinInt.Z.of_nat (size A key pq) = BinInt.Z.of_nat K := ZifyClasses.rew_iff (size A key pq = K) (BinInt.Z.of_nat (size A key pq) = BinInt.Z.o
f_nat K) (ZifyClasses.mkrel nat BinNums.Z eq BinInt.Z.of_nat eq (fun x y : nat => iff_sym (Znat.Nat2Z.inj_iff x y)) (size A key pq) (BinInt.Z.of_nat (size A key pq)) eq
_refl K (BinInt.Z.of_nat K) eq_refl) HK in let cstr : BinInt.Z.le BinNums.Z0 (BinInt.Z.of_nat (size A key pq)) := Znat.Nat2Z.is_nonneg (size A key pq) in let cstr0 : Bi
nInt.Z.le BinNums.Z0 (BinInt.Z.of_nat K) := Znat.Nat2Z.is_nonneg K in let __arith : forall (__p1 : Prop) (__x1 : BinNums.Z), BinInt.Z.le (BinInt.Z.add (BinNums.Zpos Bin
Nums.xH) __x1) __x1 -
> __p1 := fun (__p1 : Prop) (__x1 : BinNums.Z) => let __wit := [] in let __varmap := VarMap.Elt __x1 in let __ff := Tauto.IMPL (Tauto.A Tauto.isProp {| RingMicromega.Fl
hs := EnvRing.PEadd (EnvRing.PEc (BinNums.Zpos BinNums.xH)) (EnvRing.PEX BinNums.xH); RingMicromega.Fop := RingMicromega.OpLe; RingMicromega.Frhs := EnvRing.PEX BinNums
.xH |} tt) None (Tauto.X Tauto.isProp __p1) in ZMicromega.ZTautoChecker_sound __ff __wit (eq_refl <: ZMicromega.ZTautoChecker __ff __wit = true) (VarMap.find BinNums.Z0
__varmap) in __arith (true = false) (BinInt.Z.of_nat K) Hk2) Hk in eq_ind true (fun b : bool => size A key (if b then match delete_max A key (insert A key e pq) with
| Some (_, updpq') => updpq'
| None => insert A key e pq
end else insert A key e pq) = K) (let H0 : exists (k : A) (q : priqueue A key), delete_max A key (insert A key e pq) = Some (k, q) := insert_delete_max_some A key e pq
lst Hpriq Habs in match H0 with
| ex_intro _ x x0 => (fun (k : A) (H1 : exists q : priqueue A key, delete_max A key (insert A key e pq) = Some (k, q)) => match H1 with
| ex_intro _ x1 x2 => (fun (q : priqueue A key) (Hd : delete_max A key (insert A key e pq) = Some (k, q)) => eq_ind_r (fun o : option (A * priqueue A key) => size A key
match o with
| Some (_, updpq') => updpq'
| None => insert A key e pq
end = K) (delete_max_Some_size A key K (insert A key e pq) q k (e :: lst) lst (insert_priq A key e pq Hpriq) (insert_relate A key pq lst e Hpriq Habs) (eq_ind (size A k
ey pq) (fun K0 : nat => size A key (insert A key e pq) = S K0) (insert_size A key pq lst e Hpriq Habs) K HK) Hd) Hd) x1 x2
end) x x0
end) (K <? 1 + K) H) HK) (insert_size A key pq lst e Hpriq Habs)) : forall (K : nat) (A : Type) (key : A -
> nat) (e : A) (pq : priqueue A key) (lst : list A), priq A key pq -> Abs A key pq lst -> size A key pq = K -> size A key (insert_bounded K A key e pq) = K
: forall (K : nat) (A : Type) (key : A -> nat) (e : A) (pq : priqueue A key) (lst : list A), priq A key pq -> Abs A key pq lst -> size A key pq = K -
> size A key (insert_bounded K A key e pq) = K


